
ARTICLE Communicated by Eric Mjolsness

Machine Learning: Deepest Learning as Statistical
Data Assimilation Problems

Henry D. I. Abarbanel
habarbanel@ucsd.edu
Marine Physical Laboratory, Scripps Institution of Oceanography, and Department
of Physics, University of California, San Diego, La Jolla, CA 92093-0374, U.S.A.

Paul J. Rozdeba
paul.rozdeba@uni-potsdam.de
Sasha Shirman
ashirman@physics.ucsd.edu
Department of Physics, University of California, San Diego, La Jolla,
CA 92093-0374, U.S.A.

We formulate an equivalence between machine learning and the formula-
tion of statistical data assimilation as used widely in physical and biolog-
ical sciences. The correspondence is that layer number in a feedforward
artificial network setting is the analog of time in the data assimilation
setting. This connection has been noted in the machine learning litera-
ture. We add a perspective that expands on how methods from statistical
physics and aspects of Lagrangian and Hamiltonian dynamics play a role
in how networks can be trained and designed. Within the discussion of
this equivalence, we show that adding more layers (making the network
deeper) is analogous to adding temporal resolution in a data assimila-
tion framework. Extending this equivalence to recurrent networks is also
discussed.

We explore how one can find a candidate for the global minimum of
the cost functions in the machine learning context using a method from
data assimilation. Calculations on simple models from both sides of the
equivalence are reported.

Also discussed is a framework in which the time or layer label is taken
to be continuous, providing a differential equation, the Euler-Lagrange
equation and its boundary conditions, as a necessary condition for a min-
imum of the cost function. This shows that the problem being solved
is a two-point boundary value problem familiar in the discussion of
variational methods. The use of continuous layers is denoted “deepest
learning.”

These problems respect a symplectic symmetry in continuous layer
phase space. Both Lagrangian versions and Hamiltonian versions of these
problems are presented. Their well-studied implementation in a discrete

Neural Computation 30, 2025–2055 (2018) © 2018 Massachusetts Institute of Technology
doi:10.1162/neco_a_01094

2026 H. Abarbanel, P. Rozdeba, and S. Shirman

time/layer, while respecting the symplectic structure, is addressed. The
Hamiltonian version provides a direct rationale for backpropagation as a
solution method for a certain two-point boundary value problem.

1 Introduction

Through the use of enhanced computational capability, two seemingly un-
related inverse problems have flourished over the past decade. One is ma-
chine learning (ML) in the realm of artificial intelligence (Potember, 2017;
Goodfellow, Bengio, & Courville, 2016; LeCun, Bengio, & Hinton, 2015)
with developments that often go under the name “deep learning.” The other
is data assimilation (DA) in the physical and life sciences. This describes
the transfer of information from observations to models of the processes
producing those observations (Bennett, 1992; Evensen, 2009; Abarbanel,
2013).

This article demonstrates that these two areas of investigation are the
same at a fundamental level. Each is a statistical physics problem where
methods used in one may prove valuable for the other. The main goal of
the article is to point out that many developments in DA can be used in
the arena of ML. We also suggest that innovative methods from ML may be
valuable in DA.

A connection between data assimilation, machine learning, and opti-
mal control theory has been discussed in the literature (Doya, 1992; Haber,
Ruthotto, Holtham, & Jun, 2017; Rey, 2017). Here we explore further the
implications of this recognition that once one has a variational principle
underlying the selection of an optimally trained network or DA model, the
connection of such variational principles with Lagrangian and Hamiltonian
formulations of classical mechanics provides additional opportunities for
understanding the design and performance of ML problems.

Two areas of focus are attended to here: (1) a variational annealing (VA)
method for the action (cost function) for ML or statistical DA that permits
the location of the apparent global minimum of that cost function to be
found and (2) the notion of analyzing each problem in continuous time or
layer, which we call deepest learning, wherein it is clear that one is ad-
dressing a two-point boundary value problem (Ye, Rey et al., 2015; Gelfand
& Fomin, 1963) with an underlying symplectic structure. Methods abound
for solving such two-point boundary value problems (Press, Teukolsky, Vet-
terling, & Flannery, 2007) and for ensuring that symplectic structures are
respected when time (or layer) is discretized. These may be quite fruitful in
ML.

This article primarily discusses multilayer perceptrons or feedforward
networks (Goodfellow et al., 2016), though it also makes it clear that the
discussion carries over to recurrent networks as well (Jordan, 1986; Elman,
1990; Parlos, Chong, & Atiya, 1994).

Machine Learning 2027

2 Background

2.1 Machine Learning; Standard Feedforward Neural Nets. We begin
with a brief characterization of simple architectures in feedforward neural
networks (Potember, 2017; Goodfellow et al., 2016; LeCun et al., 2015). The
network we describe is composed of an input layer l0 and an output layer
lF and hidden layers l1, l2, . . . , lF − 1. Within each layer we have N active
units, called neurons. For our purposes here, the “neurons” in each layer
are assigned the same structure as a nonlinear map. This can be generalized
to different numbers and different types of neurons in each layer at the cost
of a notation explosion.

Data are available at layer l0 and at layer lF in many pairs of L-
dimensional input, at l0, and output, at lF . These are pairs of L-dimensional
vectors: {y(k)

r (l0), y(k)
r (lF)} where k = 1, 2, . . . identifies the pairs, and r is an

index on the L-dimensional data r = 1, 2, 3, . . . , L ≤ N.
The activity of the units in each hidden layer l, x(k)

r (l); l0 < l < lF , is de-
termined by the activity in the previous layer. This connection is described
by the nonlinear function fr(•) via

x(k)
r (l) = fr(x(k)(l − 1), l) = fr

⎛
⎝ N∑

q=1

Wr q(l)x(k)
q (l − 1)

⎞
⎠ . (2.1)

The summation over weights Wr q(l) determines how the activities in layer
l − 1 are combined before allowing fr(•) to act, yielding the activities at
layer l. There are numerous choices for the manner in which the weight
functions act, as well as numerous choices for the nonlinear functions, and
we direct readers to the References for discussion of the virtues of those
choices (Potember, 2017; Goodfellow et al., 2016; LeCun et al., 2015).

At the input and the output layers l0, lF , the network activities are com-
pared to the M pairs of observations, and the network performance is as-
sessed using an error metric, often a least squares criterion, or cost function,

CM(x(k)(l), y(k)(l)) = 1
M

M∑
k=1

1
2 L

L∑
r=1

Rm(r, l)[x(k)
r (l) − y(k)

r (l)]2, (2.2)

Rm(r, l) is nonzero only at l = {l0, lF}.
Minimization of this cost function over all x(k)

r (l) and weights Wr q(l), sub-
ject to the network model, equation 2.1, is used to determine the weights,
the variables x(k)

r (l) in all layers, and any other parameters appearing in the
architecture of the network.

We wish to find the global minimum of the cost function, equation 2.2,
which is a nonlinear function of the neuron activities, the weights, and any

2028 H. Abarbanel, P. Rozdeba, and S. Shirman

other parameters in the functions at each layer. This is an NP-complete
problem (Murty & Kabadi, 1987) and suggests one cannot find a global min-
imum of the ML problem, as set, unless there is a special circumstance. We
will identify just such a circumstance in a DA problem equivalent to ML
tasks.

The ML problem as described here assumes there is no error in the model
itself, so that the minimization of the cost function, equation 2.2, is subject to
strong equality constraints through the model. This results in the outputs
at layer lF , x(k)(lF), being very complicated functions of the parameters in
the model and the activities at layers l ≤ lF . This is likely connected to the
many local minima associated with the NP-complete nature of the search
problem.

2.2 ML with Model Error. The ML problem as described here (Potem-
ber, 2017; Goodfellow et al., 2016) assumes there is no error in the model,
equation 2.1. This results in the outputs at layer lF , x(k)(lF), being very
complicated functions of the parameters in the model and the activi-
ties at layers l ≤ lF . We relax the equality constraint, equation 2.1, by
adding it as a penalty function to the cost function, defining the ML action
AML(X):

AML(X) =
lF∑

l=l0

CM(x(k)(l), y(k)(l))

+ R f

2

M∑
k=1

lF−1∑
l=l0

N∑
j=1

[
x(k)

j (l + 1) − f j

(
N∑

i=1

Wj,i(l)x
(k)
i (l)

)]2

. (2.3)

In the limit R f → ∞, the equality constraint is restored. Another viewpoint
sees the layer-to-layer rule as stochastic with additive gaussian noise and a
diagonal precision matrix R f .

2.3 Standard Statistical Data Assimilation. In the same spirit, we now
briefly describe the formulation of a statistical DA problem.

DA uses observations of a sparse set of dynamical variables, associ-
ated with a model of the processes producing the observations. This will
allow the estimation of parameters in the model and of the unobserved
state variables of the model. We denote the state variables of a model as
x(t) = {x1(t), x2(t), . . . , xD(t)}, including fixed parameters in the model as
state variables that do not change in time. This follows (Press et al., 2007) in
spirit and simplifies our notation in many places.

The goal is to estimate any unknown parameters in the model and, be-
cause not all of the dynamical state variables in the model may be observed,
estimate those unmeasured state variables as well. After a certain time win-
dow [t0, tF] in which information is transferred to the model, we have an

Machine Learning 2029

estimate of the full model. This provides a new initial condition at t = tF

xa(tF); a = 1, 2, . . . , D for all state variables and yields estimated parame-
ters. One may now make predictions with the completed model, and these
may be compared to new observations. This validation by prediction is es-
sentially the same as the question of generalization as addressed in ML
(Goodfellow et al., 2016).

In DA, one has a window in time [t0, tF] during which observations
y(k)(τs) are made at times t = {τ1, τ2, . . . , τF} that lie in [t0 ≤ τs ≤ tF]; s =
1, 2, . . . , F. At each observation time L, measurements yl (τs); l = 1, 2, . . . , L
are made, L ≤ D. Through knowledge of the measurement instruments, the
observations are related to the state variables of the model via measurement
functions hl (x) : yl (τk) = hl (x(τk)); l = 1, 2, . . . , L.

Using what knowledge we have of the processes producing the observa-
tions, we develop a dynamical model for the state variables. These satisfy a
set of D dynamical differential equations:

dxa(t)
dt

= Fa(x(t), t); a = 1, 2, . . . , D. (2.4)

The time dependence of the vector field F(x, t) may come from external forc-
ing functions driving the dynamics.

This set of differential equations will necessarily be represented in dis-
crete time when solving them numerically, resulting in a map xa(tk) →
xa(tk+1) = fa(x(tk), tk) in which the discrete time vector field fa(•) is related
to Fa(x, t) via the integration procedure one chooses for equation 2.4.

Starting from an initial condition xa(t0), we use the discrete time model
xa(tk+1) = fa(x(tk), tk) to move forward to the first observation time τ1, then
to τ2, . . . eventually reaching the end of the observation window at tF .
Altogether by making NI model integration steps in each of the intervals
[τn, τn+1], we make (F + 1)NI time steps: t0 → τ1 → τ2 . . . → τF → tF . There
are many reasons why we would want to have many model integration
steps between observations. One might be the desire for higher temporal
resolution in moving the model forward; another might be stability of the
nonlinear dynamical processes involved.

The measurements are noisy and the models have errors, so this is a
statistical problem. Our goal is to construct the conditional probability
distribution, P(X|Y), of the model states X(tF) = {x(t0), x(t1), . . . , x(tN), . . . ,
x(tF)}, conditioned on the LF measurements Y(τF) = {y(τ1), y(τ2), . . . ,
y(τk), . . . , y(τF)}.

Assuming the transition to the model state at time tk+1 depends only
on the model state at time tk (i.e., the dynamics in xa(tk) → xa(tk+1) =
fa(x(tk), tk) is Markov) and using identities on conditional probabilities
(Abarbanel, 2013), one may write the action A(X) = − log[P(X|Y)] (sup-
pressing the Y dependence of the action) as

2030 H. Abarbanel, P. Rozdeba, and S. Shirman

A(X) = −
F∑

n=1

CMI[X(τn), y(τn)|Y(τn−1)]

−
NI(F+1)−1∑

n=0

log[P(x(tn+1)|x(tn))] − log[P(x(t0))]. (2.5)

The conditional mutual information is given as (Fano, 1961) CMI(a, b|c) =
log

[P(a,b|c)
P(a|c) P(b|c)

]
. If the model is error free, the transition probabil-

ity, P(x(tn+1)|x(tn)), is a delta function: P(x(tn+1)|x(tn)) = δD(x(tn+1) −
f(x(tn), tn)).

With a representation of P(X|Y), we may evaluate conditional expected
values of functions G(X) on the path X = X(tF) of the model through the
observation window [t0, tF] as

E[G(X)|Y] = 〈
G(X)

〉 =
∫

dX G(X) exp[−A(X)]∫
dX exp[−A(X)]

, (2.6)

in which

A(X) = −
F∑

n=1

log[P(y(τn)|X(τn), Y(τn−1)]

−
N(F+1)−1∑

n=0

log P[(x(tn+1)|x(tn))] − log[P(x(t0))], (2.7)

and terms depending only on the observations were canceled between nu-
merator and denominator in the expected value, equation 2.6.

If the observations at the times τk are independent and the measure-
ment function is the identity yr(τk) = hr(x(τk)) = xr(τk), and if the noise in
the measurements is gaussian, with a diagonal inverse covariance matrix
Rm(r, τk), the first term in the action A(X), the measurement error term,
takes the form

F∑
n=1

L∑
r=1

Rm(r, τn)
2

(
xr(τn) − yr(τn)

)2

. (2.8)

If no measurement is made at τk, Rm(x, τk) = 0.
If the error in the model xa(tk+1) = fa(x(tk), tk) is taken as additive and

gaussian with diagonal precision matrix (inverse covariance matrix) R f (a),
the second term in A(X), the model error term, becomes

Machine Learning 2031

NI(F+1)−1∑
n=0

D∑
a=1

R f (a)
2

(
xa(tn+1) − fa(x(tn), tn)

)2

. (2.9)

In each term, constants having to do with normalizations of the gaus-
sians cancel in the expected value. If we keep these constants and take the
limit R f (a) → ∞, we would restore the delta function and thus the strong
constraints in the dynamics.

Finally, if one accepts ignorance of the distribution of initial conditions
P(x(t0)) and selects it as uniform over the dynamical range of the model
variables,

〈
G(X)

〉
is evaluated with

A0(X) =
F∑

n=1

L∑
r=1

Rm(r, τn)
2

(
xr(τn) − yr(τn)

)2

+
NI(F+1)−1∑

n=0

D∑
a=1

R f (a)
2

(
xa(tn+1) − fa(x(tn), tn)

)2

. (2.10)

〈
G(X)

〉
is then

〈
G(X)

〉 =
∫

dX G(X) exp[−A0(X)]∫
dX exp[−A0(X)]

. (2.11)

This is the desired connection between the ML formulation (with model
error) and the statistical DA formulation: identify layer labels as time l ⇔ t.
One needs to compare equation 2.10 with equation 2.3 to see that with the
recognition that DA receives information input at many times τk while the
ML formulation receives information input only at the input and output
layers, the problems are the same in their formulation. As we noted before,
there has been some discussion of this connection (Doya, 1992; Rey, 2017;
Haber et al., 2017), and we provide further analysis of the opportunities
provided to train and design and validate ML problems.

Following its role in statistical DA, we call A0(X), equation 2.10, the stan-
dard model.

One critical suggestion here, relative to standard practice in ML (Potem-
ber, 2017; Goodfellow et al., 2016; LeCun et al., 2015), is that by allowing
R f to be finite from the outset—so acknowledging model error—we may
add a tool for exploration in ML environments where typically no account
for model error is introduced. Further, the hyperparameter R f serves as a
regulating device for the complexity of the surface in path space in which
the estimation of states and parameters occurs.

2032 H. Abarbanel, P. Rozdeba, and S. Shirman

3 Data Assimilation Developments of Use in Machine Learning

3.1 Finding the Global Minimum. The key to establishing estimates for
unobserved state variables (L < D) and unknown parameters in the model
is to perform, approximately of course, the integral, equation 2.11. The in-
tegral is not gaussian. If it were, we would just do it. As the functions fa(•)
are nonlinear, we must perform a numerical evaluation of equation 2.6. One
can do this using Monte Carlo methods (Landau, Paez, & Bordeianu, 2010)
or by the method of Laplace (Laplace, 1774, 1986). In the Laplace method
one seeks minima of the action A0(X), equation 2.10.

The Laplace method approximates the integral with contributions from
the lowest minima of the action if one can find them. Minima associated
with paths X having larger action give exponentially smaller contributions
to expected values, equation 2.11, than paths with smaller action. Viewing
the Laplace method as an estimation of an expected value integral turns
our attention to networks, trained with given data, where the smallest ac-
tion minimum is quite a bit smaller than other action minima. This turns
our goal away from seeking a convex A(X) and to identifying when the in-
formation in the available data, combined with the architecture of the net-
work, together provide a very good approximation to desired properties of
the conditional probability distribution P(X|Y). We elaborate on this view
in the examples worked out in later sections for both a DA problem and an
ML problem.

We have developed a variational annealing (VA) approach (Ye, Kadakia,
Rozdeba, Abarbanel, & Quinn, 2015; Ye, Rey, et al., 2015) to finding the path
with the smallest value of the action. While we have no mathematical proof
that the global minimum is found, our numerical results indicate this may
be the case. The VA method produces a set of minima of the action giving
a numerical clue as to the roughness of the surface in path X space. It also
finds low-action minima with much higher rates of success than starting
directly with large R f .

In DA, the surface depends, among other items, on the number of mea-
surements L at each observation time τk, on the hyperparameter R f ; and on
the number of model time steps between measurement times τn. This trans-
lates directly to the analogous ML problem with time → layer. As the num-
ber of model time steps between measurement times increases, the number
of hidden layers increases and the model architecture deepens.

VA proceeds by a kind of numerical continuation (Allgower & Georg,
1990) in R f of the requirement that varying over all X and all parameters in
A0(X) minimizes A0(X). The procedure begins by taking R f → 0, namely,
the complete opposite of the value found in usual ML where R f → ∞ (de-
terministic, error free layer to layer maps) from the outset. In the R f = 0
limit, the action is just a quadratic function of the model variables x(τk) at
the times measurements are made, and the minimization is simple: xr(τk) =
yr(τk) for the r = 1, 2, . . . , L ≤ D data presented at the input and output

Machine Learning 2033

layers. The minimum can be degenerate as we know only L ≤ D values for
the state variables.

At the first step of VA, we choose as a solution to the optimization prob-
lem xr(τk) = yr(τk) and select the other D − L states as drawn from a uni-
form distribution with ranges known from the dynamical range of the state
variables. One can learn that well enough by solving the underlying model
forward for various initial conditions. We make this draw K times and now
have K paths X0 as candidates for the VA procedure.

Now we select a small value for R f ; call it R f 0. Using the K paths X0 as
initial choices in our minimization procedure, we arrive at K new paths X1.
This gives us K values of the action A0(X1) associated with the new paths
X1.

Next we increase the value of R f to R f = R f 0α where α > 1. (We have
found values of α in the range 1.1 to 2 to be good choices, but a choice here
is problem dependent.) For this new value of R f , we perform the minimiza-
tion of the action starting with the K initial paths X1 from the previous step
to arrive at K new paths X2. Evaluating the action on these paths A0(X2) now
gives us an ordered set of actions that are no longer as degenerate. Many
of the paths X2 may give the same numerical value of the action. However,
typically the “degeneracy” lies within the noise level of the data ≈ (1/

√
Rm).

This procedure is continued until R f is large enough, which is indicated
by at least one of the action levels becoming substantially independent of
R f . As a check on the calculation, we observe that if the action A0(X) is in-
dependent of R f , its expected value is that of the measurement error term.
As the measurement errors were taken to be gaussian, this term in the ac-
tion is distributed as χ2, and its expected value is readily evaluated. If the
action levels are at this expected value of χ2 for large R f , the procedure is
consistent, and no further increases in R f are required.

Effectively VA starts with a problem (R f = 0) where the global minimum
is apparent and systematically tracks it and many other paths through in-
creases in R f . In doing the tracking of the global minimum, one must check
that the selected value of α is not too large lest one leave the global mini-
mum and land in another minimum. Checking the result using smaller α is
worthwhile.

It is important to note that simply starting with a large value of R f , R f ≈
1 or larger places one in the undesirable situation of the action A0(X) having
multiple local minima into which any optimization procedure is quite likely
to fall.

In the dynamical problems we have examined, one typically finds that
as the number of measurements L at each τk is increased, fewer and fewer
minima of the action remain, and when L is large enough, there is one min-
imum. This we attribute to the additional information from the augmented
set of measurements, and this will be manifest in the discussion that follows
where the additional information effectively controls unstable directions in
the phase space.

2034 H. Abarbanel, P. Rozdeba, and S. Shirman

3.2 Smallest Minimum; Not Necessarily a Convex Action. As our goal
is to provide accurate estimations of the conditional expected value of func-
tions G(X) where X, a path in model space, is distributed as exp[−A(X)],
we actually do not require convexity of A(X) as a function in path space.
From the point of view of accurately estimating expected values, it is suf-
ficient that the lowest action level be much smaller than the second-lowest
action level. If the action value at the lowest level A(Xlowest) is much smaller
than the action value at the next minimum A(Xsecond lowest), then by a factor
exp[−{A(Xlowest) − A(Xsecond lowest)}], the lowest path, Xlowest, dominates the
integral to be done and provides a sensible choice for the path at which to
evaluate the integral.

We will see in the examples that when the VA procedure is used, we may
encounter situations where the action is apparently not convex. However, it
may have a distinct smallest action level, much smaller in magnitude than
the next-lowest action level. That lowest level is expected to give a path that
provides an accurate estimation to the expected value of functions G(X).
This may occur in cases where sufficient information from the data has been
transferred to the model (in either ML or DA), and this can indicate the size
model adequate for the problem posed.

4 An Example from DA and an Example from a Feedforward Neural
Network

In this section, we examine one example from multilayer perceptrons and
one example from statistical DA. The latter uses a differential equation
model introduced by Lorenz in 1996 (Lorenz, 2006), which permits one
to easily increase the number of dimensions of the phase space, easily se-
lect the number of observations within a designated measurement window,
and easily choose the number of model evaluations between measurement
times. The last is analogous to increasing the number of layers in a multi-
layer perceptron.

In each case, we perform a twin experiment, a designation taken from
meteorological applications of DA. They are often used to test new DA
methods before applying them to field or laboratory data. In a twin experi-
ment, one uses a model to generate solutions from some initial conditions.
These solutions, when gaussian noise is added to them, become our library
of noisy data. With the noisy data, we use VA to estimate the unobserved
state variables (hidden layer variables) and parameters/weights.

4.1 Data Assimilation for the Lorenz96 Model

4.1.1 Action Level Plots; A(X) versus R f . We begin by examining the D-
dimensional dynamical equations introduced by Lorenz (2006):

Machine Learning 2035

dxa(t)
dt

= xa−1(t)(xa+1(t) − xa−2(t)) − xa(t) + ν, (4.1)

where a = 1, 2, . . . , D; x−1(t) = xD−1(t); x0(t) = xD(t); xD+1(t) = x1(t). ν is a
fixed parameter, which we take to be 10.0 at which the solutions to the dy-
namical equations are chaotic (Kostuk, 2012). The equations for the states
xa(t) are meant to describe weather stations on a periodic spatial lattice. This
model is widely used in atmospheric science as a test bed for the exploration
of innovative DA ideas.

Our example selects D = 11, and we display in Figure 1 the action level
plot for L = 2, 4, 5, and 6 observations at each measurement time within
the window [t0, tF]. We perform a twin experiment wherein we generate D
time series {xa(t); a = 1, 2, . . . , D} for equation 4.1 using a standard adap-
tive fourth-order Runge-Kutta algorithm with a time step �t = 0.025 and
an initial condition x(t0) drawn from a uniform distribution over the range
of the variables x(t), namely, [−10,+10]. To these solutions of equation 4.1,
we add gaussian noise with mean zero and variance σ 2 = 0.2 to each time
series xa(t). These noisy versions of our model time series constitute our
data {ya(t)}. L of these D time series are presented to the model at each ob-
servation time τn; t0 ≤ τn ≤ tF; n = 1, 2, . . . , F.

The measurement window is from t0 = 0 to tF = 4.125. L = 2, 4, 5, 6 mea-
surements are made at each time step; these are the y(τn). This gives us 165
measurements in the window [0,4.125]. The measurement error matrix Rm

is taken to have diagonal elements at each measurement time τn and is zero
at other times. Its magnitude is taken as Rm = 1/σ 2 = 5.

The model error precision matrix R f (a) is also taken as diagonal, with
elements along the diagonal R f = R f 02β , in performing the VA procedure,
and we take β = 0, 1, 2, R f 0 was chosen 0.01.

The minimizations of nonlinear objective functions in the example us-
ing the Lorenz96 model were performed using the public domain software
IPOPT (Wachter & Biegler, 2006) with a front end script written in Python.

In Figure 1, we display action-level plots for L = 2, 3, 4, and 6 observa-
tions at each measurement time. As we can see in the top left panel, where
L = 2, there are numerous local minima in the action A0(X) for all values
of R f ≥ R f 0, and these action levels remain as R f becomes very large, in-
dicating there are multiple local minima for the action A(X). None of these
minima are very far separated from the paths with the smallest minimum,
so that the evaluation of the expected value integrals, equation 2.11, would
require contributions from many maxima of the conditional probability
distribution.

When L = 4 (see the top right panel), we begin to see an isolated action
level whose contribution to the expected value integral is overwhelmingly
larger than the contribution from the path giving rise to the next largest
action level. In this case, the contribution of the second smallest action level
is a bit less than 10−4 of the contribution of the smallest action level. As the

2036 H. Abarbanel, P. Rozdeba, and S. Shirman

Figure 1: Action-level plots for the Lorenz96 model, equation 4.1, with D =
11 and ν = 10.0. The variational annealing procedure is performed with 100
different initial conditions for the minimization of the action at each value of
R f = R f 0α

β; β = 0, 1, . . . ; α = 2. (Top left) L = 2 measurements at each mea-
surement time. At L = 2, there are many minima, but none so much smaller
than the others that it dominates the expected value integral, equation 2.11. (Top
right) L = 4 measurements at each measurement time. At L = 4, the action in path
space X has numerous local minima. The lowest minimum has an action value
much smaller than the action values from the other minima, and this dominates
the expected value integral, equation 2.11. (Bottom left) L = 5 measurements at
each measurement time. At L = 5, the number of minima found is only two,
and again the lowest minimum dominates the expected value integral. (Bottom
right) L = 6 measurements at each measurement time. At L = 6, there is only
one minimum of the action. The solid green line is the expected value of the
measurement error term. This is distributed as χ2. As the action becomes inde-
pendent of R f , its expected value should equal this value.

action has many minima, it is likely not convex, and that criterion may, for
purposes of practical calculation, be somewhat unimportant. The value L =
4 is consistent with the observation in Kostuk (2012) that around L ≈ 0.4D,

Machine Learning 2037

the instabilities in the Lorenz96 state space appear to be controlled by the
DA process.

At L = 5 or 6 (see the bottom panels), we see that the dominance of the
lowest action level is even clearer. The horizontal olive-colored line is the
expected value of the measurement error term in the action. This is a sign
of the consistency of the DA calculations.

The lesson from these calculations is that although there is one remaining
action level for the cases when L ≥ 6, indicating that sufficient information
has been provided to the model from the observations to guarantee a kind
of convexity, it is not necessary to measure this many quantities at each
measurement time τn if our goal is accurate evaluation of the expected value
integrals of interest. This tells us when we can stop increasing the number
of observations in what might be an expensive measurement program.

4.1.2 Increasing the Number of Steps for the Dynamics. In Figure 2, we ex-
plore another aspect of the action-level plots. We still use D = 11, and now
we hold L = 6 fixed. We increase the time between observations to 28 within
the window [t0, tF], so δτ ≈ 0.147. We choose now to move the model for-
ward between observations 0, 2, 5, or 11 times. This is to provide an analogy
to how many layers are present in an equivalent ML example. Our exam-
ple here differs by having many entry points in the measurement window
while the ML example has only one.

We display in the top left panel the action-level plots for the selected
number of model evaluation steps. As one can see for 0 and 2 intermediate
steps, we have many persisting minima of the action. At 5 and 11 inter-
mediate steps, there is only a single minimum that is found, and for large
R f , it comes to the same action level as with 2 intermediate steps. All are
consistent with the expected value of the measurement error term. This cal-
culation, performed in an ML context, provides information on how many
hidden layers are required to achieve a desired accuracy.

In the top right panel, we display the accuracy of the estimation of the
single parameter in the Lorenz96 model. It has been set at ν = 10.0 in pro-
ducing the data, and that value is clearly selected for 5 or 11 intermediate
model evaluations, while it is not so clearly selected for 2 intermediate steps
and with zero intermediate steps there is a consistent 6% to 8% error.

In the bottom panel, we blow up the section of the top right panel where
some of the results are obscured by overlay of the symbols. We also removed
the solid olive green line at ν = 10.0 for clarity.

We see, in this collection of calculations, as noted earlier (Ye, Kadakia
et al., 2015; Ye, Rey et al., 2015), the ability to identify that the dominant
minimum of the action depends on the number of measurements presented
during the statistical DA procedure embodying transfer of information
from the data to the model. In DA, this is associated with the number of
positive conditional Lyapunov exponents (Kostuk, 2012) of the model. In
the ML instantiation, it may play the same role when the number of data

2038 H. Abarbanel, P. Rozdeba, and S. Shirman

Figure 2: Parameter estimation and action-level results for the Lorenz96 model,
D = 11, L = 6. ν = 10.0. Observations were made every �tobs = 0.15, and L = 6
measurements were made at each observation time. (Top left) Action-level
estimates: These are the action levels when L = 6 observations are made at
each measurement time and with the choice of 0, 2, 5, and 11 model evaluation
steps between measurement times. The horizontal olive green line indicates the
expected action level for large R f . (Top right) Parameter estimates: Between
the observations, the model was evaluated 0, 2, 5, and 11 times leading to �tmodel

= 1.0, 0.33, 0.16, and 0.08 ∗�tobs. The parameter estimates are quite accurate for
5 and for 11 model time steps between observations. They are less well defined
or accurate for 0 or 2 model steps between observations. The red triangles de-
noting 5 model steps are nearly directly beneath the blue triangles denoting 11
model steps. Improvement of parameter estimation with increasing model steps
between observations begins to saturate. One can associate the idea of increas-
ing the number of model steps between observations as equivalent to deepening
the hidden (unobserved) layers. The horizontal olive green line is the parameter
value, ν = 10.0, used in generating the data. (Bottom) Blowup for parameter

estimates: The previous panel is blown up so that each �tmodel is now visible.
The horizontal olive green line at ν = 10 is removed.

Machine Learning 2039

presented at the output layer is not sufficient to determine the parameters
and hidden states in each layer.

We also see the analog of deepening the network produces higher accu-
racy estimates of conditional expected values.

4.2 A Multilayer Perceptron; Feedforward Network

4.2.1 Creating Data with a Known Network. We built a feedforward net-
work with lF layers: one input layer at l0 and one output layer at lF . This net-
work has lF − 2 hidden layers. A network with 100 layers was constructed
with weights drawn from a uniform distribution U[−0.1, 0.1]. The network
has 10 neurons in each layer. The activity in neuron j in layer l, x j(l), is
related to x j(l − 1) in the previous layer as

x j(l) = g(W(l)x(l − 1)); g(z) = 0.5
[
1 + tanh

(z
2

)]
. (4.2)

Data, consisting of input-output pairs {x(k)
i (l0), x(k)

i (lF)}; k = 1, 2, . . .,
were constructed by presenting x(k)

i (l0) at layer l0 and passing it through
the network to generate x(k)

i (lF) at the output layer lF . To these input-output
pairs, we added gaussian noise with zero mean and variance 0.0025 to cre-
ate our noisy library of {y(k)(l0), y(k)(lF)} pairs. These noisy data were now
stored for further use.

4.2.2 Selecting a Model to Represent the {y(k)(l0), y(k)(lF)} Pairs. We are now
presented a subset of this library of input-output pairs and choose a multi-
layer perceptron with lF layers and N neurons per layer to represent the
input-output relationship: {y(k)

i (l0), y(k)
i (lF)}; k = 1, 2, . . . , M. This selected

network had N = 10 neurons in each of lF = 10 layers at first. At the in-
put and output layers, 10 noisy values {y(k)

i (l0), y(k)
i (lF)}; i = 1, . . . , N = 10

are presented for various values of M. This corresponds to L = 10 in the no-
tation used before. As M is increased, more and more of the complexity of
the relationship of the pairs is explored and more and more is demanded
of our selected network.

We purposely chose to explore the relationship of our noisy data set pairs
{y(k)(l0), y(k)(lF)}; y = {y1, y2, . . . , yL} with a wrong model. We tried to place
ourselves in the situation where one receives a library of input-output pairs
and is asked to develop a multilayer perceptron to learn the representation
of the information in the pairing. This is more like the usual situation in
which one wishes to perform a machine learning task. We call the selected
model with lF = 50 “wrong” because in this twin experiment, we know the
model that generated the data. Our goal is to see where the incorrectness of
the model displays itself, and then to augment the original model choice to
improve its ability to predict outputs from inputs it had not seen before.

2040 H. Abarbanel, P. Rozdeba, and S. Shirman

M input-output pairs are presented to the model with L = 10 inputs
y(k)(l0) at layer l0 and 10 data outputs y(k)(lF) at layer lF . We investigated
M = 1, 2, 10 and 100.

In each case, we minimized the action over all the weights and the states
x(k)

a (l) at all layers of the model:

AM(X) = 1
M

M∑
k=1

{
Rm

2L

N∑
i=1

[
(x(k)

i (l0) − y(k)
i (l0))2 + (x(k)

i (lF) − y(k)
i (lF))2

]

+ R f

NlF

lF−1∑
l=l0

N∑
a=1

[
x(k)

a (l + 1) − ga(W(l)x(k)(l))
]2}

. (4.3)

We use the variational annealing procedure already described to identify
the action levels for various paths through the network. The initial value
of R f 0/Rm is taken to be 10−8, and this is incremented via R f /Rm = R f 0α

β

with α = 1.1 and β = 0, 1, . . . ,. In the numerical optimizations for the ML
example, we used L-BFGS-B (Byrd, Lu, Nocedal, & Zhu, 1995; Zhu, Byrd,
& Nocedal, 1997).

To present more information to our selected model, we could increase
the number of training pairs available to the network at l0 and lF ; this is
our number M. M can be chosen as large as the user wishes. To augment
the ability of the model to represent the complexity of the data set as M
increases, we could also increase N or lF or both.

In the calculations we present here, we did not explore the importance
of presenting fewer than N data elements at the input or output layer;
L < N. We have done that for other examples not reported here, and as one
increases L, the ability of the model to represent the data does improve.
We also do not report here on using nonlinear neuron functions such as
g(x) = log(1 + ex), a ReLU-like nonlinearity (Goodfellow et al., 2016; LeCun
et al., 2015). The results are not substantially different from what we report
here.

4.2.3 Prediction with the Selected Model. Once we have used the VA proce-
dure to select the path X, comprising x(k)

j (l) and the Wi j(l) for all neurons and
weights at each layer l0 ≤ l ≤ lF , giving the minimum action A(X), we have
a new model that can be used to predict the output from presenting a new
input. From the original data set of noisy pairs {y j(l0), yi(lF)}, we now se-
lect MP pairs for testing the model. The inputs y(r)

j (l0); r = 1, 2, . . . , MP; j =
1, . . . , N are presented to the input layer of the estimated model. The out-
puts from the operation of the model network x(r)

j (lF) are compared to the
known outputs y(r)

j (lF) using the averaged square error:

Machine Learning 2041

E(lF)2 = 1
NMP

MP∑
r=1

N∑
j=1

(x(r)
j (lF) − y(r)

j (lF))2. (4.4)

4.2.4 Models to Represent the Pairs {y(k)(l0), y(k)(lF)}: Results. All models
have 10 neurons in each layer, and we examine different values of lF and
M, the number of training input-output pairs. In each calculation, we used
K = 100 initial paths in the VA procedure. In each graphic, therefore, there
are 100 action levels possible. As the number of training pairs is increased,
the number of action levels decreases as a function of R f /Rm, so many, and
then all, of the K = 100 initial conditions go to the same minimum of the
action.

Our first model selected lF = 10; the results are in Figure 3. In the up-
per left panel, M = 1 data pair, there is not enough information at M = 1
to produce an action level that dominates the integral, equation 2.6. This is
indicated in this graphic as well as others we will show by the many action
levels (up to K = 100 here) that do not separate well.

M = 2 data pairs. Here we see a few action levels separate from the oth-
ers, and a number of remaining levels are close as R f /Rm grows. The appar-
ent smallest action level in Figure 3 is suspect because its action is too low.
When the action levels as a function of R f /Rm become nearly independent
of R f , the action level should be approximately one in magnitude. In the
lower left panel, M = 10 data pairs. At large R f /Rm, only one action level
remains. Now the remaining action level at large R f /Rm is near one as we
anticipated by the normalization chosen in the action for the measurement
error term. In the lower right panel is a blowup of the lower left panel to
show that only one action level remains for large enough R f /Rm.

The essential message from using the VA procedure is that when enough
information is presented to the model, the action levels show a clear global
minimum with much higher valued (lower probability) action minima. Fi-
nally, when the information presented is enough, only a single (global) min-
imum remains. The path associated with this action level is then expected
to produce good predictions when new input-output pairs are presented to
the model. We will see how this works out in the lF = 50 example below.

Our second model selected lF = 20, and the results are in Figure 4. In
each calculation, we display 100 action levels at each value of R f /Rm in
the variational annealing protocol described in the text. The action levels,
equation 4.3, are displayed when we increase R f /Rm from a quite small
value, R f 0/Rm = 10−8, to large values: R f /Rm = (R f 0/Rm)αβ with α = 1.1
and β = 0, 1, . . . , until R f /Rm ≈ 1010.

In the upper left panel, M = 1 data pair. There is not enough information
at M = 1 to produce an action level that dominates the integral, equation
2.6. In the upper right panel, M = 2 data pairs, and in the lower left panel,
M = 5 data pairs. At large R f /Rm only one action level remains: lower right

2042 H. Abarbanel, P. Rozdeba, and S. Shirman

Figure 3: Action levels from training, estimating parameters (weights), and un-
observed state variables, in a network with lF = 10 layers and N = 10 neurons
per layer. The data input-output pairs were generated with lF = 100, N = 10,
and chosen parameters. In each calculation, we display 100 action levels at each
value of R f /Rm in the variational annealing protocol described in the text. The
action levels, equation 4.3, are displayed when we increase R f /Rm from a quite
small value R f 0/Rm = 10−8 to large values R f /Rm = (R f 0/Rm)αβ with α = 1.1
and β = 0, 1, . . . , until R f /Rm ≈ 1010. (Upper left) M = 1 data pair. There is not
enough information at M = 1 to produce an action level that dominates the in-
tegral, equation 2.6. (Upper right) M = 2 data pairs. (Lower left) M = 10 data
pairs. At large R f /Rm, only one action level remains. (Lower right) Blowup of
the lower left panel to show that only one action level remains for large enough
R f /Rm. The input-output pairs constituting the data were generated by a net-
work with N = 10 neurons in each of lF = 100 layers.

panel with M = 10 data pairs. At large R f /Rm, only one action level remains.
The input-output pairs constituting the data were generated by a network
with N = 10 neurons in each of lF = 100 layers.

The remarks on this set of results are essentially the same as for Figure
3. Here we also include the calculation of M = 5. Again, if we start with
the data from our library of input-output pairs, we would conclude that

Machine Learning 2043

Figure 4: Action levels from training, estimating parameters (weights), and un-
observed state variables in a network with lF = 20 layers and N = 10 neurons
per layer. The data input-output pairs were generated with lF = 100, N = 10,
and chosen parameters. In each calculation, we display 100 action levels at each
value of R f /Rm in the variational annealing protocol described in the text. The
action levels, equation 4.3, are displayed when we increase R f /Rm from a quite
small value R f 0/Rm = 10−8 to large values R f /Rm = (R f 0/Rm)αβ with α = 1.1
and β = 0, 1, . . . , until R f /Rm ≈ 1010. (Upper left) M = 1 data pair. There is not
enough information at M = 1 to produce an action level that dominates the inte-
gral, equation 2.6. (Upper right) M = 2 data pairs. (Lower left) M = 5 data pairs.
At large R f /Rm, only one action level remains. (Lower right) M = 10 data pairs.
At large R f /Rm, only one action level remains. The input-output pairs consti-
tuting the data were generated by a network with N = 10 neurons in each of
lF = 100 layers.

an accurate model would be achieved with each of the model training by
M = 2, 5, and 10. In our next example, we will also compare the models
trained with different M via their predictions output for new inputs.

Our last model presented here has lF = 50 and displays action levels for
M = 1, 2, 10 in Figure 5. The action levels, equation 4.3, are displayed when
we increase R f /Rm from a quite small value, R f 0/Rm = 10−8, to large values,
R f /Rm = (R f 0/Rm)αβ , with α = 1.1 and β = 0, 1, . . . , until R f /Rm ≈ 1010.

2044 H. Abarbanel, P. Rozdeba, and S. Shirman

Figure 5: Action levels from training, estimating parameters (weights), and un-
observed state variables, in a network with lF = 50 layers and N = 10 neurons
per layer. The data input-output pairs were generated with lF = 100, N = 10,
and chosen parameters. In each calculation, we display 100 action levels at each
value of R f /Rm in the variational annealing protocol described in the text. The
action levels, equation 4.3, are displayed when we increase R f /Rm from a quite
small value R f 0/Rm = 10−8 to large values R f /Rm = (R f 0/Rm)αβ with α = 1.1
and β = 0, 1, . . . , until R f /Rm ≈ 1010. We display action levels for M = 1, 2, and
10 input-output pairs presented to the model network.

We display action levels for M = 1, 2, and 10 input-output pairs presented
to the model network.

The results here are quite similar to those for smaller networks, lF =
10, 20, and our remarks on the action-level display are much the same.

Finally, we evaluate the quality of predictions in the cases with lF =
10, 20, 50 with M = 1, 2, 5, 10 for training each model. The prediction errors
are shown in Figure 6. Looking, for example, at the outcome when LF = 50,
we see that increasing the number of training pairs leads to a decreasing
prediction error. Depending on the information in the library of training
pairs, we may find networks of different sizes in lF (layer size or machine
depth here), and different numbers of training pairs to achieve a desired
level of prediction accuracy.

The VA procedure allows one to select a model among the choices one
makes in the model design to accomplish the quality of prediction error de-
sired. In the example data set we created and used here, many fewer layers
were required than the number used (lF = 100) to create the data set, and

Machine Learning 2045

Figure 6: Prediction errors, equation 4.4, for proposed networks with lF =
10, 20, 50 layers and M = 1, 2, 5, 10 training pairs. In each case, the path, hidden-
layer neuron activities and weights, producing the lowest minimum in the ac-
tion levels determined the trained network. The number of test pairs presented
to the trained network was MP = 100. The training data input-output pairs, as
well as the testing input-output pairs, were generated from a network with
lF = 100 layers.

with the presentation of quite a small number of input-output pairs, we
could achieve small prediction errors. It may go without saying that while
we lack tools to simply examine a set of data pairs and know which model
(lF, N) and architecture one would require and how many training pairs
would also be required, VA provides a constructive path to addressing the
question based on the prediction accuracy the user desires.

4.3 Recurrent Networks. In a recurrent network architecture, one al-
lows both interactions among neurons from one layer to another layer as
well as interactions among neurons within a single layer (Jordan, 1986;
Elman, 1990). The activity x j(l) of neuron j, j = 1, 2, . . . , N in layer l
{l0, l1, . . . , lF} is given by x j(l) = f [

∑
i w ji(l)xi(l − 1)] in a feedforward, layer

goes to the next layer, network.

2046 H. Abarbanel, P. Rozdeba, and S. Shirman

We can add interactions within a layer in the same fashion; and to give
some dynamics to this within-layer activity, we introduce a sequential label
σ to the activity of neuron j in layer l: x j(l, σ). The mapping from layer to
layer and within a layer can be summarized by

x j(l, σ) = f

[∑
i

Wji(l)xi(l − 1, σ) +
∑

i

w ji(l)x j(l, σ − 1)

]
. (4.5)

Another version of this allows the nonlinear function to be different for
layer-to-layer connections and within-layer connections, so

x j(l, σ) = f

[∑
i

Wji(l)xi(l − 1, σ)

]
+ g

[∑
i

w ji(l)x j(l, σ − 1)

]
, (4.6)

where f (x) and g(x) can be different nonlinear functions.
We can translate these expressions into the DA structure by recognizing

that x j(l) is the model variable in the layer-to-layer function, while in the
recurrent network, the state variables become x j(l, σ). It seems natural that
as dimensions of connectivity are added—here going from solely feedfor-
ward to that plus within-layer connections—that additional independent
variables would be aspects of the neuron state variables’ representation.

In adding connections among the neurons within a layer, we have an-
other independent variable—we called it σ—and the point neurons de-
pending on layer alone become fields x j(l, σ). In the ML/AI networks, we
have no restrictions on the number of independent variables. This may lead
to the investigation of neural fields φ j(v), where v is a collection of indepen-
dent variables indicating which layers are involved in the progression of the
field from an input to an output layer.

However many independent variables and however many neurons we
use in the architecture of our model network, the overall goal of identifying
the conditional probability distribution P(X|Y) and estimating the moments
or expected values of interest still comes to one form or another of approx-
imating integrals such as equation 2.6.

4.4 Making Time Continuous; Continuous Layers: Deepest Learning

4.4.1 Euler-Lagrange Equations for DA and ML; Lagrangian Formulation.
There is much to learn about the DA or ML problem as the number of lay-
ers or, equivalently, the number of time points within an epoch become very
large. The limit of the action where the number of layers becomes a contin-
uous variable is, in DA notation (Kadakia, Rey, Ye, & Abarbanel, 2017),

Machine Learning 2047

A0(x(t), ẋ(t)) =
∫ tF

t0

dt L(x(t), ẋ(t), t), (4.7)

where

L(x(t), ẋ(t), t)

=
L∑

r=1

Rm(r, t)
2

(
xr(t) − yr(t)

)2

+
D∑

a=1

R f (a)
2

(
ẋa(t) − Fa(x(t))

)2

.

= χ (x(t) − y(t)) +
D∑

a=1

R f (a)
2

(
ẋa(t) − Fa(x(t))

)2

. (4.8)

In this formulation, the quantity Rm(r, t) is nonzero only near the times t ≈
τk. Within the ML context, we call this “deepest learning” as the number of
layers goes to infinity in a useful manner.

To find the minima of the action, we must require the necessary condition
that changes the action vanish, under small variations in xa(t) → xa(t) +
δxa(t) and ẋa(t) → ẋa(t) + δẋa(t). This means

δA0(x(t), ẋ(t))

=
∫ tF

t0

dt
{

∂L(x(t), ẋ(t), t)
∂xa(t)

δxa(t) + ∂L(x(t), ẋ(t), t)
∂ ẋa(t)

δẋa(t)
}

=
∫ tF

t0

dt
{

∂L(x(t), ẋ(t), t)
∂xa(t)

− d
dt

∂L(x(t), ẋ(t), t)
∂ ẋa(t)

}
δxa(t)

+ δxa(t)
∂L(x(t), ẋ(t), t)

∂ ẋa(t)

∣∣∣∣
t=tF

− δxa(t)
∂L(x(t), ẋ(t), t)

∂ ẋa(t)

∣∣∣∣
t=t0

= 0. (4.9)

The minimization of the action now requires that the paths x(t) in
{x(t), ẋ(t)} space satisfy the Euler-Lagrange equation:

d
dt

[
∂L(x(t), ẋ(t), t)

∂ ẋa(t)

]
= ∂L(x(t), ẋ(t), t)

∂xa(t)
. (4.10)

The solutions must also satisfy the boundary conditions
∑D

a=1 δxa(t0)
pa(t0) = 0,

∑D
a=1 δxa(tF)pa(tF) = 0, where pa(t) = ∂L(x(t), ẋ(t), t)/∂ ẋa(t) is the

canonical momentum.

2048 H. Abarbanel, P. Rozdeba, and S. Shirman

For the standard model, the Euler-Lagrange (E-L) equations take the
form

R f

[
d
dt

δab + DFab(x(t))
] [

dxb(t)
dt

− Fb(x(t))
]

= ∂χ (x(t) − y(t))
∂xa(t)

d2xa(t)
dt2 −

o∑
b=1

�ab(x(t))ẋb(t) =
∂

[
χ (x(t)−y(t))

R f
+ F(x(t))2

2

]
∂xa(t)

+ ∂Fa(x(t), t)
∂t

,

(4.11)
where we have

DFab(x) = ∂Fa(x)/∂xb; �ab = DFab(x(t)) − DFba(x(t));

χ (x(t) − y(t)) =
L∑

r=1

Rm(l, t)
2

(
xr(t) − yr(t)

)2

. (4.12)

The E-L equations show how errors represented on the right-hand side of
the E-L equation drive the model variables at all layers to move x(l) → y(l)
where data are available.

In the integral for 〈G(X)〉, the coordinates x(t0) and x(tF) are not restricted,
so we have the “natural” boundary conditions (Gelfand & Fomin, 1963; Kot,
2014; Liberzon, 2012) pa(t0) = 0 and pa(tF) = 0.

This shows quite clearly that the minimization problem requires a so-
lution of a two-point boundary value problem in {x(t), v(t) = ẋ(t)} space.
One way to address two-point boundary value problems is to start at one
end, t0, with a value of x(t0), and proceed from tF with a value of x(tF) and
integrate both ways requiring a match (Press et al., 2007). Furthermore, the
residual of the measurement error term on the right-hand side of equation
4.11 nudges the solution in x(t) to the desired output.

If one were to specify x(t0) but not x(tF), then the boundary conditions
for the Euler-Lagrange equation are the given x(t0) (δx(t0) = 0) and require
the canonical momentum pa(tF) = 0. Examining the Hamiltonian dynamics
for this problem then suggests integrating the x(t) equation forward from
t0 and the canonical momentum equation backward from tF . This is back-
propagation.

The skew-symmetric matrix �ab(x(t)) = ∂Fa(x(t)/∂xb(t) − ∂Fb(x(t)/∂xa(t)
generates a local rotation. The potential expansion or contraction of orbits of
x(t) is under control because of the compact structure of the rotations so gen-
erated. In the Hamiltonian formulation where backprop is employed, this
balancing aspect of the Jacobians, ∂Fa(x(t)/∂xb(t), is split between the co-
ordinate equation and the canonical momentum equation and may lead to
unstable or numerically quite difficult issues in its implementation. The so-
lution in Lagrangian coordinates {x(t), ẋ(t)} avoids this and retains the sym-
plectic nature of the solutions (Marsden & West, 2001; Kadakia et al., 2017).

Machine Learning 2049

It could be that making backpropagation explicitly symplectic (Hairer, Lu-
bich, & Wanner, 2006) could address this issue.

4.4.2 Gauge Transformations. The Euler-Lagrange equation resembles the
motion of a charged object in a D-dimensional magnetic field and an elec-
tric field in D-dimensions. The term analogous to the magnetic field is
�ab = DFab(x(t)) − DFba(x(t)), as it is perpendicular to the velocity. The ana-
log electric field is

E (x, t) =
∂

[
χ (x(t)−y(t))

R f
+ F(x(t))2

2

]
∂xa(t)

+ ∂Fa(x(t), t)
∂t

, (4.13)

recalling −Ea(x, t) = ∂φ(x,t)
∂xa

+ ∂Aa (x,t)
∂t in electrodynamics. The analogy is that

the scalar potential φ(x, t) is χ (x(t) − y(t)) + F(x, t)2/2, and the vector po-
tential is Aa(x, t) = Fa(x, t).

If we make the “gauge” transformation Fa(x, t) → Fa(x, t) + ∂aψ (x, t),
then �ab is unchanged. The “electric field” becomes

E (x, t) → E (x, t) + ∇a

[
F(x, t) · ∇ψ (x, t) + ∇ψ (x, t))2

2
+ ∂ψ (x, t)

∂t

]
,

(4.14)

and this “electric field” and the equations of motion are unchanged if ψ (x, t)
satisfies

(
∂ψ (x, t)

∂t
+ F(x, t) · ∇ψ (x, t)

)
+ (∇ψ (x, t))2

2
= 0. (4.15)

Along with an invariance such as this is a conserved current. In this case,
it happens to be local in x space conservation of number of particles. Were
we discussing recurrent networks, more structure would be involved.

4.4.3 Hamiltonian Dynamics Realization; Backpropagation. If one moves
from the Lagrangian realization of the variational problem to a Hamilto-
nian version by trading in the Lagrangian phase space from {x(t), v(t)} to
canonical coordinates {x(t), p(t)}, then the Hamiltonian H(x, p) for the stan-
dard model reads

H(x, p, t) =
D∑

a=1

{
pa(t)pa(t)

2R f (a)
+ pa(t)Fa(x(t))

}

−
L∑

r=1

Rm(r, t)
2

(xr(t) − yr(t))2. (4.16)

2050 H. Abarbanel, P. Rozdeba, and S. Shirman

In these coordinates, the equations of motion are then given by Hamil-
ton’s equations:

dpa(t)
dt

= −pb(t)
∂Fb(x(t))
∂xa(t)

+ δarRm(r, t)(xr(t) − yr(t)),

dxa(t)
dt

= Fa(x(t)) + pa(t)
R f (a)

. (4.17)

Returning from this to discrete time (or layers), we see that if the vari-
ational principle is carried out in {x, p} space, the boundary conditions
pa(t0) = pa(tF) = 0 are quite easy to impose while the other variables, all the
xa(tk) and the pa(tk); k
= 0, F, are varied. Going forward in x and backward
in p is neither required nor suggested by this formulation. It is worth noting
that in either {x, v} space or {x, p} space, the continuous time (layer) formu-
lation has a symplectic symmetry (Gelfand & Fomin, 1963; Kadakia et al.,
2017). This not automatically maintained when the discrete time (layer)
problem is reinstated (Marsden & West, 2001; Wendlandt & Marsden, 1997);
however, many choices of integration procedure in which time/layer be-
comes discrete and the symplectic symmetry is maintained are known
(Marsden & West, 2001; Wendlandt & Marsden, 1997; Hairer et al.,
2006).

In a detailed analysis (Kadakia et al., 2017; Ye, Rey et al., 2015) of the vari-
ational problem in Lagrangian and Hamiltonian formulations, it appears
that the direct Lagrangian version in which the state variables x(tn) or x(ln)
are varied, the symplectic structure can be maintained and the boundary
conditions on the canonical momentum respected (Marsden & West, 2001;
Wendlandt & Marsden, 1997).

In practice, this means that the direct variational methods suggested for
the ML problems taking into account model error (R f
= ∞) may skirt issues
associated with backpropagation. This issue may be seen a bit more directly
by comparing how one moves in {x(t), ẋ(t)} space organized by equation
4.11 with the motion in {x(t), p(t)} space guided by equation 4.17. These are
equivalent motions of the model in time/layer, connected by a Legendre
transformation from {x(t), ẋ(t)} → {x(t), p(t)}.

In the Hamiltonian form, where R f → ∞ is the limit where one usually
works, moving in regions where DF(x) may have saddle points may “slow
down” the progression in the canonical momentum p(t). This may occur at
a maximum, at a minimum, or at a saddle point of DF(x). At any of these,
the observation in LeCun et al. (2015), “The analysis seems to show that
saddle points with only a few downward curving directions are present in
very large numbers, but almost all of them have very similar values of the
objective function. Hence, it does not much matter which of these saddle
points the algorithm gets stuck at,” may apply. In the Lagrangian formula-
tion, equation 4.11, the manner in which DF(x) enters the motion is quite

Machine Learning 2051

different and may well avoid this confounding property. We have pointed
out that equation 4.17 is backprop. The use of the Lagrangian variational
principle (Marsden & West, 2001; Wendlandt & Marsden, 1997) solves the
same problem, so may have an unexpected virtue.

5 Summary and Discussion

This article has drawn a direct analogy between the formulation of a much
utilized class of ML problems and a set of equivalent problems in DA as
encountered in many physical, biological, and geoscience problems. Many
engineering analyses where data-driven model development and testing is
a goal are also in this category. The fundamental equivalence of the two
inquiries is the core of this article.

The analogy allows us to identify methods developed in DA as poten-
tially quite useful in ML contexts. In particular, the possibility of using vari-
ational annealing to produce the global minimum of the action (cost func-
tion) of the standard model of DA with both observation error and model
error appears potentially of value.

The idea of making time continuous for purposes of exploring properties
of DA suggests a similar tactic in ML. The ML step of making layers contin-
uous we have called “deepest learning,” as deep learning appears to result
from increasing the number of layers. In the continuous layer (time) formu-
lation, we see clearly that the problem to be solved is a two-point boundary
value problem. This may lead to the construction and solution of tractable
models that may helpfully illuminate how deep learning networks oper-
ate successfully and expand the possibilities of utilizing them employing
additional methods for numerical calculations and interpretation.

In the formulation of the statistical DA problem at the general level ex-
pressed in equation 2.5, we see that the measurement error term, which
is where information from data is passed to the model, it is explicitly in-
formation through Shannon’s conditional mutual information that is being
passed from observations to the model. This suggests that the idea that deep
learning works because of major increases in computing power, as well as
in having large data sets may have a sound basis; however, the attribute of
the data sets is not so much that they are large but that they possess infor-
mation, in a precise manner, that can be utilized to learn about models. The
conjunction of information transfer and state and parameter estimation is
embodied in the work of Rissanen (1989, 2007), where he identifies the cost
of estimating a parameter or a state variable at some time. The arguments
we have presented suggest evaluating how much information in a data set
is available to inform a model is of greater utility than just the size of the
data set itself.

One point not made explicit in the main text but worth noting is that
once we have formulated the DA or ML problems as accurately performing
high-dimensional integrals such as equation 2.6, the Laplace approximation

2052 H. Abarbanel, P. Rozdeba, and S. Shirman

method, namely, the usual variational principle, permits the investigation
of corrections through further terms in the expansion of the action about
the path leading to the global minimum (Abarbanel, 2013). Ye, Rey et al.
(2015) showed that corrections to this first approximation are small as R f

becomes large when analyzing the standard model. This need not be the
case for other choices of noise distributions in the measurement error or
model error terms in the action.

Another item of interest is the argument noted in LeCun et al. (2015)
that as the dimension of a model increases, one may find fewer and fewer
local minima confounding the search in path space for a global minimum,
and in that situation many more unstable saddle points in path space will
arise (Dauphin et al., 2014; Choromanska, Henaff, Mathieu, Arous, & Le-
Cun, 2015).

In the case of a chaotic system such as the Lorenz96 model, the evidence
is that however large the dimension of the model itself and the paths over
which one may search, there are multiple local minima until the number of
measurements at any observation time is large enough and the information
transferred to the model is sufficient. The role of the number of model eval-
uations between observations, suggested in some of the arguments here,
also play a significant part in establishing whether the action surface has
many local minima.

The view of a deep network as moving from a few hidden layers to many
may also be illuminated by our arguments. One idea is that by increasing
the number of hidden layers, one is increasing the resolution in the analog
of time in DA. When one does that in DA, we see it as probing the varia-
tion of the underlying model as it evolves from an initial condition through
“layer” = “time.” Missing the higher-frequency variations in time by em-
ploying a coarse grid in discrete time should have its counterpart role in the
feedforward networks discussed here.

It is recognized that the “neuron” models widely used in ML applications
have little in common with properties of biological neurons; the construc-
tion and implementation of large networks that have successful functions
within ML may prove a useful guide for the construction and implementa-
tion of functional natural neural networks.

Finally, it is important to comment that while the analogy drawn and
used here may improve the testing and validation of models supported by
observational data, it does not assist in the selection of the models and their
formulation. That is still a task to be addressed by the user.

Acknowledgments

Partial support from the MURI Program (N00014-13-1-0205), sponsored by
the Office of Naval Research, is acknowledged, as is support for A.S. from
the ARCS Foundation.

Machine Learning 2053

References

Abarbanel, H. D. I. (2013). Predicting the future: Completing models of observed complex
systems. New York: Springer.

Allgower, E. L., & Georg, K. (1990). Numerical continuation methods: An introduction.
Berlin: Springer. doi:10.1007/978-3-642-61257-2

Bennett, A. F. (1992). Inverse methods in physical oceanography. Cambridge: Cambridge
University Press. doi:10.1017/CBO9780511600807

Byrd, R. H., Lu, P., Nocedal, J., & Zhu, C. (1995). A limited memory algorithm
for bound constrained optimization. SIAM Journal on Scientific Computing, 16(5),
1190–1208. doi:10.1137/0916069

Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B., & LeCun, Y. (2015). The
loss surfaces of multilayer networks. In G. Lebanon & S. V. N. Vishwanathan
(Eds.), Proceedings of the Eighteenth International Conference on Artificial Intelligence
and Statistics (vol. 38, pp. 192–204). San Diego, CA: PMLR. http://proceedings
.mlr.press/v38/choromanska15.html

Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., & Bengio, Y. (2014).
Identifying and attacking the saddle point problem in high-dimensional non-
convex optimization. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence,
& K. Q. Weinberger (Eds.), Advances in neural information Processing Systems, 27
(pp. 2933–2941). Red Hook, NY: Curran.

Doya, K. (1992, May). Bifurcations in the learning of recurrent neural networks.
In Proceedings of the 1992 IEEE International symposium on Circuits and Systems
(vol. 6, pp. 2777–2780). Piscataway, NJ: IEEE. http://ieeexplore.ieee.org/abstract
/document/230622/

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2), 179–211.
doi:10.1207/s15516709cog1402_1

Evensen, G. (2009). Data assimilation: The ensemble Kalman filter. Berlin: Springer.
doi:10.1007/978-3-642-03711-5

Fano, R. M. (1961). Transmission of information: A statistical theory of communication.
Cambridge, MA: MIT Press.

Gelfand, I. M., & Fomin, S. V. (1963). Calculus of variations (R. A. Silverman, Trans.).
Mineola, NY: Dover.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge, MA: MIT
Press.

Haber, E., Ruthotto, L., Holtham, E., & Jun, S.-H. (2017). Learning across scales: A mul-
tiscale method for convolution neural networks. arXiv:1703.02009v2 [cs.NE].

Hairer, E., Lubich, C., & Wanner, G. (2006). Geometric numerical integration: Structure-
preserving algorithms for ordinary differential equations. Berlin: Springer.

Jordan, M. I. (1986). Attractor dynamics and parallelism in a connectionist sequen-
tial machine. In Proceedings of the Eighth Annual Conference of the Cognitive Science
Society (pp. 531–546). Hillsdale, NJ: Erlbaum.

Kadakia, N., Rey, D., Ye, J., & Abarbanel, H. D. I. (2017). Symplectic structure of
statistical variational data assimilation. Quarterly Journal of the Royal Meteorological
Society, 143(703), 756–771. doi:10.1002/qj.2962

http://proceedings.mlr.press/v38/choromanska15.html
http://ieeexplore.ieee.org/abstract/document/230622/

2054 H. Abarbanel, P. Rozdeba, and S. Shirman

Kostuk, M. (2012). Synchronization and statistical methods for the data assimilation of
HVc neuron models. Ph.D. diss., University of California, San Diego. http://
escholarship.org/uc/item/2fh4d086

Kot, M. (2014). A first course in the calculus of variations. Providence, RI: American
Mathematical Society.

Landau, R. H., Paez, M. J., & Bordeianu, C. C. (2010). A survey of computational
physics: Introductory computational science. Princeton, NJ: Princeton University
Press.

Laplace, P. S. (1774). Memoir on the probability of causes of events. Mémoires de Math-
ématique et de Physique, Tome Sixième (pp. 621–656).

Laplace, P. S. (1986). Memoir on the probability of the causes of events (S. M. Stigler,
Trans.). Statistical Science, 1(3), 364–378.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–444.
doi:10.1038/nature14539

Liberzon, D. (2012). Calculus of variations and optimal control theory. Princeton, NJ:
Princeton University Press.

Lorenz, E. N. (2006). Predictability: A problem partly solved. In T. Palmer & R. Hage-
dorn (Eds.), Predictability of weather and climate. Cambridge: Cambridge Univer-
sity Press.

Marsden, J. E., & West, M. (2001). Discrete mechanics and variational integrators.
Acta Numerica, 10, 357–514. doi:10.1017/S096249290100006X

Murty, K. G., & Kabadi, S. N. (1987). Some NP-complete problems in quadratic and
nonlinear programming. Mathematical Programming, 39(2), 117–129. doi:10.1007
/BF02592948

Parlos, A. G., Chong, K. T., & Atiya, A. F. (1994). Application of the recurrent mul-
tilayer perceptron in modeling complex process dynamics. IEEE Transactions on
Neural Networks, 5(2), 255–266. doi:10.1109/72.279189

Potember, R. (2017, January). Perspectives on research in artificial intelligence and artifi-
cial general intelligence relevant to DoD (Tech. Rep. JSR-16-Task-003). McLean, VA:
JASON, MITRE Corporation. http://www.dtic.mil/docs/citations/AD1024432

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical
recipes: The art of scientific computing (3rd ed.). Cambridge: Cambridge University
Press.

Rey, D. (2017). Chaos, observability and symplectic structure in optimal estimation. Ph.D.
diss., University of California, San Diego. https://escholarship.org/uc/item
/3049w2dh

Rissanen, J. (1989). Stochastic complexity in statistical inquiry theory. River Edge, NJ:
World Scientific Publishing.

Rissanen, J. (2007). Information and complexity in statistical modeling. New York:
Springer. doi:10.1007/978-0-387-68812-1

Wachter, A. R., & Biegler, L. T. (2006). On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Mathematical
Programming, 106(1), 25–57. doi:10.1007/s10107-004-0559-y

Wendlandt, J. M., & Marsden, J. E. (1997). Mechanical integrators derived from a
discrete variational principle. Physica D: Nonlinear Phenomena, 106(3–4), 223–246.
doi:10.1016/S0167-2789(97)00051-1

http://escholarship.org/uc/item/2fh4d086
http://www.dtic.mil/docs/citations/AD1024432
https://escholarship.org/uc/item/3049w2dh

Machine Learning 2055

Ye, J., Kadakia, N., Rozdeba, P. J., Abarbanel, H. D. I., & Quinn, J. C. (2015). Im-
proved variational methods in statistical data assimilation. Nonlinear Processes in
Geophysics, 22(2), 205–213. doi:10.5194/npg-22-205-2015

Ye, J., Rey, D., Kadakia, N., Eldridge, M., Morone, U., Rozdeba, P., . . . Quinn, J. C.
(2015). Systematic variational method for statistical nonlinear state and parame-
ter estimation. Physical Review E, 92(5), 052901. doi:10.1103/PhysRevE.92.052901

Zhu, C., Byrd, R. H., & Nocedal, J. (1997). Algorithm 778: L-BFGS-B: FORTRAN rou-
tines for large scale bound constrained optimization. ACM Transactions on Math-
ematical Software, 23(4), 550–560.

Received October 2, 2017; accepted February 9, 2018.

