
Data Assimilation

Henry D. I. Abarbanel
Department of Physics,

and
Marine Physical Laboratory,

Scripps Institution of Oceanography,
University of California San Diego

9500 Gilman Drive

La Jolla, CA 92093

habarbanel@ucsd.edu

Contents

1 Introduction 2

2 Formulation of Statistical DA 3

3 Evaluating the Expected Value Integral 6

3.1 Standard Model for SDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 Measurement Error Term in the Action . . . . . . . . . . . . . . . 7
3.1.2 Model Error Term in the Action . . . . . . . . . . . . . . . . . . . 7

3.1.3 π(x(t0)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Variational Principles–Laplace’s Method (1774) . . . . . . . . . . . . . . . 8
3.3 Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3.1 Random Proposals; Metropolis Hastings . . . . . . . . . . . . . . . 10
3.3.2 Hamiltonian Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . 11

4 Closing Comments 12

1



1 Introduction

A core issue in Physics in this century is the study of networks of nonlinear systems or

high-dimensional nonlinear systems. Networks may consist of connected collections of
low dimensional nonlinear dynamical systems each of whose properties we have learned
to analyze [Aba96, KS04]. That analysis tells us how to evaluate some invariants asso-

ciated with the attractor on which orbits of the dynamical system move after transients
of the motion become unimportant. These include a collection of fractal dimensions

characteristic of the density on the attractor, ρ(r):

ρ(r) =
1

N

N
∑

n=1

δD(r− x(tn)) (1)

where r is a location in the D-dimensional space in which solutions x(t) of the system

differential equation
dxa(t)

dt
= Fa(x(t)); a = 1, 2, ...,D (2)

reside. The density follows the orbit x(t) starting at t1 in discrete time, and tn =
t1 + (n − 1)∆t.

Also included among these invariants are the D global Lyapunov exponents [Aba96,
KS04].

Characterizing properties of the attractor of a nonlinear dynamical system from time

series observations of a measured orbit while the system is driven by some given forces
does little to answer the question of paramount importance in determining the equations

of motion of the system producing that orbit. For that we need to use observations of a
system such as Eq. (2) and transfer the information in those observations to establish

various aspects of the “vector field” F(x).
The notion of data assimilation arose in the long-standing problem of predicting

the weather using as a model of the ocean and atmosphere the fluid dynamical equations
of motion. These equations are partial differential equations for quantities such as the

temperature T (r, t) at all spatial points in the atmosphere and ocean r = (x, y, z) as
a function of time. The equations do not, in general, have closed form, analytic solu-
tions with the complicated boundary conditions imposed by the actual Earth system.

Numerical solutions require a discretization of both space and time.
Further, and more important here than the accuracy of the numerical solutions, is

the fact that the equations of motion exhibit chaotic trajectories [Lor63] leading to the
amplification of small perturbations, for example, from numerical round-off error. This

leads to uncertainties in solutions to the dynamical equations from even very precisely
specified initial conditions. To address this, the idea was that if we could measure

the dynamical variables, such as T (r, t), we would know where the real Earth system
actually lies at the measurement time, and we could use these measurements to “guide”

the numerics toward, even to, the correct orbits of the system.
So one must collect the required measurements, and these are always noisy. Further,

the model dynamics are infinite dimensional as the state variables are fields, so we must
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settle for collecting noisy observations of a subset of the state variables at locations
in space r where instruments have been placed. As we want to predict the weather,

we must, at the end tfinal of an observation window [t0 ≤ t ≤ tfinal] in time, provide
accurate estimates of the value of all state variables, at all grid points in space used for
integrating the model, including those state variables which were not measured during

the observation window. Further, yet, we must estimate all time independent parameters
in the model in order to integrate the dynamical equations for t > tF and predict the

weather.
How big are these numerical weather models, in terms of the number of ordinary

differential equations at each selected spatial grid point? In 2019, as this is written, the
most detailed models have approximately 1.5X1010 and have available about 1% of these

as noisy measured items. So one must estimate about 99% of the state variables as well
as numerous parameters in the model representing properties of the earth, for example,

soil properties, and transport of momentum (viscosity) and energy (heat conductivity),
...; most of which we do not know very well.

When all this is addressed, we must still answer the questions of how many state

variables must be measured at each observation time in order to contain enough infor-
mation about the state of the model system to stabilize the transfer of information, and

we must address how to represent errors in the models we have selected.
That is a lot of material to get right just to predict tomorrow’s weather, or more

or less any predict the future of any complex nonlinear system. Not discouraged by
this we have put together a systematic way to proceed in this data assimilation effort,

identifying some of the actual challenges one must address.

2 Formulation of Statistical DA

First, a bit of notation. We eschew partial differential equations for the physical and

biological problems we address, so we begin with a state space of D-dimensional vari-
ables we call xa(t); a = 1, 2, ...,D. These are taken to satisfy D (nonlinear) ordinary

differential equations in continuous time

dxa(t)

dt
= Fa(x(t), u(t), θ), (3)

or discrete time versions of this telling how we move from the state at time t to the state
at time t + ∆t:

xa(t + ∆t) = fa(x(t), u(t), θ). (4)

f(x) is your selection of what method is employed for integrating Eq. (3) [PTVF07], and

that dictates how the vector field F(x) is represented by f(x). In each formulation the
quantities u(t) are a set of forces dictated from outside the collection of state variables
x(t). These forces do not obey differential equations within this framework; they make

the system go. The Np quantities θ are time independent parameters used within the
model dynamics.
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We will observe L quantities at each time τk; k = 1, 2, ..., F measurements are
made. If the discrete time increment is ∆t, then we choose τk = nk∆t for conve-

nience; nk is an integer. This is not necessary, but it prevents severe notation clut-
ter. Let’s collect all samples of the model state up to tk = t0 + k∆t into the path

X(k) = {x(t0), x(t1), ..., x(tk)} = {x(0), x(1), ...,x(k)} of the system while it moves

in the observation window, and all measured quantities into the collection Y(k) =
{y(t0), y(t1), ..., y(tk)} = {y(0), y(1), ..., y(k)}. If no measurement is made at some

time τk, the vector y(k) is not in Y.

Figure 1: Timeline of observations y(τk); τk = t0 + nk∆t and progress of the model

x(t + ∆t) = f(x(t)) through the observation window [t0 ≤ t ≤ tfinal]. The observations
are taken, for convenience only, at some multiples nk of the model sampling times ∆t.

If observations were made, for example, only at the two times t = t0 + 5∆t and t =
t0 + 173∆t, then only y(τ5) and y(τ173) are nonzero; all other y(τ) are absent.

Inevitably, the data we collect are noisy. Equally, the model we select to describe

the production of those data has errors. This means we must, at the outset, address a
conditional probability distribution π(X|Y) as our goal in the data assimilation transfer

from Y to the model. In [Aba13] we describe how to use the Markov nature of the model
dynamics x(n) → x(n + 1) = f(x(n), θ) and the definition of conditional probabilities

to derive the recursion relation connecting observations and dynamics at times tn+1
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and tn:

π(X(n + 1)|Y(n + 1)) =
π(y(n + 1), x(n + 1), X(n), Y(n))

π(y(n + 1), Y(n)) π(x(n + 1), X(n), Y(n))
·

π(x(n + 1), X(n), Y(n))

π(X(n), Y(n))
· π(X(n), Y(n))

=
π(y(n + 1), x(n + 1), X(n)|Y(n))

π(y(n + 1)|Y(n)) π(x(n + 1), X(n + 1)|Y(n))
·

π(x(n + 1)|X(n), Y(n)) · π(X(n)|Y(n))

= exp[CMI(y(n + 1), x(n + 1), X(n)|Y(n))] · π(x(n + 1)|x(n)) · π(X(n)|Y(n))

=
π(y(n + 1)|x(n + 1), X(n), Y(n))

π(y(n + 1)|Y(n))
· π(x(n + 1)|x(n)) · π(X(n)|Y(n)). (5)

We have identified CMI(a, b|c) = log[ π(a,b|c)
π(a|c) π(b|c) ]. This is Shannon’s conditional mutual

information [Fan61] telling us how many bits (for log2) we know about a when observing
b conditioned on c. For us a = {y(n + 1)}, b = {x(n + 1), X(n)}, c = {Y(n)}. We also

used the Markov property of the noisy dynamics:
π(x(n + 1)|X(n), Y(n)) = π(x(n + 1)|x(n)).

Using this recursion relation to move backwards from the end of the observation
window from tfinal = t0 + N∆t through the measurements at times τk to the start of

the window at t0, we may write, up to factors independent of X

π(X|Y) =

{ F
∏

k=0

π(y(τk)|X(τk), Y(k − 1))

final−1
∏

n=0

π(x(n + 1)|x(n))

}

π(x(0)). (6)

If we now choose π(X|Y) ∝ exp[−A(X)]. A(X) is the negative of the log likelihood; we

call this the action.
Since the dimension of X is D(N +1), and both the dimension of the model and the

length of the time series may be large, we cannot expect to visualize the full conditional
probability distribution π(X|Y). Instead we make (hopefully) educated guesses about

quantities that characterize the Physics of the dynamical motion of the model. Call
these G(X), and concentrate attention on the expected values

E[G(X)|Y] = 〈G(X)〉 =

∫

dXG(X)π(X|Y) =

∫

dXG(X) exp−[A(X)]
∫

dX exp−[A(X)]
. (7)

Many discussions of SDA or ML discuss π(X|Y) itself, but it is hard to imagine

knowing quite what to do with a function of such a large number of variables. Often, in
discussions of statistics, one recognizes that much of the information one actually works

with is contained in moments of this distribution
What G(X) are of interest?

Certainly we would like to know the expected value of the path itself: G(X) =
X. Within the observation window [t0, tF ], we make measurements and use methods
discussed below to transfer information from these observations to
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1. the observed state variables xobserved(t);

2. the unobserved state variables xunobserved(t); and

3. the unknown parameters of the model dynamics.

This usually goes by the name “fit the model to the data”, though examining the un-

observed variables are generally not considered as there is nothing to compare them
with. However, if one is testing one’s methods for the transfer of information from the
data to the model using data one has generated oneself—we call these exercises ‘twin

experiments’–this can be quite instructive.
When time a has reached t = tfinal, namely the end of observations, we have an

estimate of the full state of the system x(tfinal) and the parameters θ. From this
estimate and knowledge of the forces u(t ≥ tfinal), we now may predict the behavior

of the dynamical system beyond the observation window. In the prediction window
t ≥ tfinal no further information from observations is used.

Predicting is critical. As we only observe a subset of the model state variables,
a good ‘fit’ within the observation window only permits us to conclude that the model

may be consistent with the data. Success in predicting gives us validation (or not) of the
properties of the model. Good predictions indicate both consistency of the data with
the model we selected and a good estimate of the model state x(tfinal) and the model

parameters at the termination of observations.
In machine learning ‘prediction’ is called ‘generalization’.

When we have 〈X〉, we might want to know about the errors is the estimation of the
model state. To this end we note that 〈X〉 is a vector in D(N + 1) + Np space. We give

the components of this vector an index µ and write 〈Xµ〉 = X̄µ. Our next choice for
G(X) would then be

Gµ,ν(X) = (Xµ − X̄µ)(Xν − X̄ν), (8)

and this is the sample covariance matrix of the model path.

3 Evaluating the Expected Value Integral

3.1 Standard Model for SDA

There is a standard set of assumptions about the ingredients entering the action. The

three elements of the action are

• the conditional mutual information (CMI) representing the transfer from data

(y(τk) when observations are made: π(y(n + 1)|x(n + 1), X(n), Y(n),

• the movement of the state variables from time tn to time tn+1 represented in
π(x(n + 1)|x(n)), and

• the distribution of initial conditions π(x(0)).
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3.1.1 Measurement Error Term in the Action

The CMI term π(y(n+1)|x(n+1), X(n), Y(n) tells us that the observation at time tn+1

y(n + 1) can depend on the sequence of states up to tn+1 and the observations up to
tn. The usual interpretation of this is to consider the components of the L-dimensional

observation to be a function of x(n + 1) plus some noise. So one would write

yl(n) = hl(x(n)) + ηl(n); l = 1, 2, ..., L, (9)

and where h(x) describes the instrument(s) used in making observations. ηl(n) is a
random variable representing the noise in the measurements. This can be generalized in

various ways, say by making the noise term dependent on the state x(n). Mostly it is
simplified by taking h(x) = x and choosing ηl(n) to be Gaussian. So yl(n) = xl(n)+ηl(n)

or

π(y(n)|x(n)) = constant exp[−Rm/2

L
∑

l=1

(xl(n)− yl(n))2], (10)

where Rm can be a matrix and is known as the precision matrix of the Gaussian. The
contribution to the action from measurement errors is then

measurement error = −
Rm

2

F
∑

k=1

L
∑

l=1

(xl(τk) − yl(τk))
2, (11)

and constants cancel in the expected value integral.
One place where it is useful to note the dependence of this term on measurements

at earlier times, as allowed in the CMI formula, is when one wishes to use time delays
to account for the waveform of the measurements to augment the information available

to be transferred to the model [REK+14, REM+14, PCL16, PvLP18]

3.1.2 Model Error Term in the Action

The second term in the action moves the model state variables at time tn to the state
variables at time tn+1. If the model were perfect, this term would be a delta function:

π(x(n + 1)|x(n)) = δD(x(n + 1) − f(x(n)); ; perfect model. (12)

We must replace the delta function with something broader in x(n+1)−f (x(n), and

we choose another Gaussian to represent the model error

π(x(n + 1)|x(n)) ∝ exp

[

−
Rf

2

D
∑

a=1

(xa(tn+1) − fa(tn))2
]

. (13)
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3.1.3 π(x(t0))

Statisticians call this the prior, and Physicists recognize this as the initial condition that

the probability density for the model state variables must have as the time dependent
probability density satisfies a first order partial differential equation in time, and we

must give some statement of this to proceed.
If we know nothing or little about this, we can take it to be a uniform distribution

in the model state variables and model parameters, representing our lack of knowledge.
As we move through the observation window [t0, tfinal] information flows from the mea-

surements y(τk) and in nonlinear systems the initial conditions are ‘forgotten’ and we
can use the assumption of ‘lack of knowledge’ about the state of the system at t0.

If we have some knowledge of x(t0) either from a good guess or a previous set of
observations assimilated into the model, we should use it. Often a Gaussian distribution
is assumed so we could guess

π(x(t0)) ∝ exp

[

−
B

2

D
∑

a=1

(xa(t0) − x̄a)
2

]

. (14)

In a sense this is not a resolution of how to address model error, but a way of ducking

the issue. In practice the decision lies in the hands of the user.
Finally we assemble these pieces to arrive at an expression for the “standard model”

for SDA:

A(X) =
Rm

2

F
∑

k=1

L
∑

l=1

(xl(τk) − yl(τk))
2

Rf

2

N
∑

n=0

D
∑

a=1

(xa(tn+1) − fa(tn))2

− log[π(x(t0))]. (15)

It is important to note that even though we have taken the measurement and model

errors to be Gaussian, the presence of the nonlinear vector field f(x(n)) in the discrete
time dynamics makes the overall action non-Gaussian.

3.2 Variational Principles–Laplace’s Method (1774)

If we could locate the path X0 which yields the smallest value of the action A(X0),
that would give the largest value for π(X|Y)), we suspect that would dominate the

expected value integrals Eq. (7). To find the minima of A(X) we must locate its
extrema Xq; q = 0, 1, ...

∂A(X)

∂Xν

∣

∣

∣

∣

X
q

= 0, (16)

where the matrix
∂2A(X)

∂Xν ∂Xµ

∣

∣

∣

∣

X
q

(17)
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is positive definite.
This notion is due to Laplace [Lap74, Lap86]. As the action is nonlinear in the state

variables and parameters of the model (the path variables) there may be many minima
contributing to expected values.

The importance of the extremum can be seen if we expand the action about X0, a

minimum,

A(X) = A(X0) +
∂A(X)

∂Xν

∣

∣

∣

∣

X
0

(X− X0)ν

+
1

2

∂2A(X)

∂Xν ∂Xµ

∣

∣

∣

∣

X
0

(X −X0)ν(X−X0)µ + · · ·,

= A(X0) +
1

2
Hµν(X0)(X−X0)ν(X−X0)µ + · · ·, (18)

so if the first derivative of the action is zero and, for the moment we drop the higher

derivatives, the expected value of G(X) is approximately

〈G(X)〉 =

exp[−A(X0)]
∫

dX exp[−1
2Hµν(X0)(X−X0

ν)(X− X0)µ] G(X0)

exp[−A(X0)]
∫

dX exp[−1
2Hµν(X −X0)ν(X−X0)µ]

= G(X0) (19)

Retaining additional terms in the Taylor expansion of A(X) improves the accuracy
of Laplace’s method [ZJ02], it is known as perturbation theory in statistical physics.

Here there is another point to be made. If there is another minimum at associated
with the path X1, then another term enters with action value A(X1). Gathering this

term with the first, the leading term in 〈G(X)〉 reads

〈G(X)〉 = G(X0) + G(X1) exp[−(A(X1) − A(X0)]

(

det(H(A(X0))

det(H(A(X1))

)P/2

, (20)

where P is the dimension of the integral over X. This shows that if A(X1) > A(X0), the
second term is exponentially smaller than the first. The minimum we seek in enforcing
Eq. (16) is the one with the smallest value of the action, namely the global minimum.

Methods for finding that global minimum are discussed elsewhere [KRYA17].

3.3 Monte Carlo Methods

Monte Carlo methods [MRR+53, Has70] were invented precisely to approximate integrals

of the form Eq. (7). They employ a search method in path space X that samples π(X|Y)
in one manner or another.

All start at some selected path X0 and make a ‘proposal’ choosing the next path
X1 in a chain of accepted paths {X0, X1, X2, ...}. Starting at X0, the proposal to move

to X1 is evaluated by an acceptance criterion tuned to π(X|Y). If the proposal is
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accepted, the MC procedure moves to X1 and a second proposal is made to move to X2.
If the proposal is not accepted, the MC procedure remains at X0 and makes another

proposal for X1. This is now evaluated by the acceptance criterion, and accepted or
not. By performing this “make proposal–evaluate by acceptance criterion” many times,
a collection of accepted proposals is used to approximate the integral Eq. (7):

〈G(X)〉 ≈
1

number of accepted paths

number of accepted paths
∑

j=1

G(Xj). (21)

The error is approximately (number of accepted paths)−0.5. A useful, entertaining dis-

cussion is found in [PTVF07].
As one can imagine over the many decades since [MRR+53] this very straightforward

procedure has been explored in some depth. This document is introductory and there
would not be room for all the relevant references to MC procedures. So we will briefly
describe two MC variants and let the reader explore from there.

3.3.1 Random Proposals; Metropolis Hastings

The Metropolis-Hastings (MH) procedure produces a Markov process defined by the
transition probability P (X′|X) in path space which reaches a stationary distribution

π(X) after a large (in principle, infinite) number of repeated steps. A sufficient, but not
necessary, condition is called detailed balance which states that the transition X → X′

is reversible. This requires π(X)P (X′|X) = π(X′)P (X|X′).
Now start somewhere in path space X0 and through a rule, coming next, produce a

sequence {X0, X1, ..., XN}. called a chain. The rule is this

• start at X0;

• select a candidate location in path space Xc and accept this location or reject it;

• if you accept it, the next location along the chain, X1 = Xc;

• if you reject it, the next location along the chain, X1 = X0;

• do these steps starting at X1 and continuing to XJ . Then stop.

If we select the candidate location Xc, when we are located at Xj , according to the

transition probability P (Xc|Xj), the acceptance rule is to accept the candidate move
from location Xj to location Xc at the rate

a(Xj, Xc) = minimum

(

1,
π(Xc)P (Xj |Xc)

π(Xc|Xj)

)

. (22)

This assures us that as the number of accepted new locations J → ∞

1

J

J
∑

j=1

G(Xj) = Eπ(X)[G(X)] =

∫

dXG(X)π(X), (23)
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regardless where one starts (X0).
Basically all Monte Carlo methods using MC chains differ by the target or desired

density in path space and the rule for selecting candidate locations P (Xc|Xj). The
original [MRR+53, Has70] method chooses Xc using a draw from P (Xc|Xj). We call
this the random proposals (RP) MC procedure.

Wherever you start in path space, X0, you sample the whole distribution you desire
π(X) and perform the integral

〈G(X)〉 =

∫

dXG(X)π(X), (24)

and this nice result is approached at the rate [PTVF07]

∫

dXG(X)π(X) ≈ 〈G(X)〉 ±

√

〈G2(X)〉 − 〈G(X)〉2

J
, (25)

as J → ∞.

As one can never take J = ∞ steps from X0, the literature is built on methods to
reduce the numerator and methods to speed up the random walks underlying making

proposals for candidate locations. Two things often happen: (a) the acceptance rate is
low, so it takes a long time to collect enough samples for the sum to approximate the

integral, and/or (b) the size of an acceptable step from Xj → Xc is so small, many,
many proposed candidate locations are required.

3.3.2 Hamiltonian Monte Carlo

Hybrid Monte Carlo or Hamiltonian Monte Carlo (HMC is shorthand for either) methods
takes another path [DKPR87] from [MRR+53, Has70]. This procedure introduces a

“canonically conjugate” path P changing the action by an additive function of P, so

A(X) → A(X) + h(P); orπ(X) → exp−[h(P) + A(X)], (26)

which leaves the expected value integral unchanged

〈G(X)〉 =

∫

dXG(X) exp[−A(X)]
∫

dX exp[−A(X)]

〈G(X)〉 =

∫

dXdPG(X) exp[−A(X) + h(P)]
∫

dXdP exp[−A(X) + h(P)]
.

(27)

Candidate proposals are made in {X, P} space by a classical mechanics “canonical”
transformation [GPS02] {Xj, Pj} → {Xc, Pc} which preserves the sum H(X, P) =

A(X) + h(P) as well as the phase space volume dXj dPj = ∂Xc dPc. A number of
other quantities are also conserved as canonical transformations respect the underlying
symmetry of symplectic transformations in {X, P} phase space [GPS02].
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Canonical transformations can be accomplished in many ways. If they carry a label
“s” which we may think of as indicating a number of steps to be taken to go from

{Xj , Pj} to {Xc, Pc}, or one may call it a kind of ‘time’. If the label is continuous, both
H(X, P) and phase space volume are precisely conserved. However, as we are required
to work in discrete “s”, we cannot conserve both of these precisely [ZM88].

If both were conserved precisely, the HMC acceptance rate would be unity. Fur-
thermore, a proposal in phase space {Xj, Pj} → {Xc, Pc}, may include a ‘large’ jump

in path space. This results in jumps in P space which leave expected values of G(X)
unchanged regardless of the choice of h(P).

There are many ways to construct a canonical transformation [CB09, GPS02]. One
is to integrate Hamilton’s equations for the elements of phase space {X(s), P(s)} labeled

by ‘s’:
dX(s)

ds
=

∂H(X(s), P(s))

∂P(s)
;

dP(s)

ds
= −

∂H(X(s), P(s))

∂X(s)
, (28)

starting at s = 0 where {X(0), P(0)} = {Xj, Pj} to {X(s), P(s)}. Symplectic inte-

grators which preserve phase space volume precisely and accurately, but not precisely,
preserve H(X, P) are available [LR04, HLW06].

4 Closing Comments

There are three critical elements in statistical data assimilation (SDA)

• well curated data–namely know the instruments that collect features of observed
systems of interest to you; noise in the data collection should definitely be on your

mind;

• a model that you must provide that you argue acts dynamically to produce the

observations you have collected;

• a tested method that transfers information contained in your data to your model.

After making the third step, you must use your well informed model, now having

estimates of the full state of the model at the termination of observations x(tfinal) as
well as estimates of all unknown parameters in the model, to make predictions of the

response of your model for t > tfinal to new stimuli.
The next essay will discuss how this works in practice in establishing biophysical

models for neurons using data collected in neurobiological experiments.
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